Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy

Identifieur interne : 000587 ( Russie/Analysis ); précédent : 000586; suivant : 000588

Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy

Auteurs : RBID : Pascal:03-0016537

Descripteurs français

English descriptors

Abstract

Kelvin probe force microscopy is used to observe the bulk potential redistribution across the high power InGaAs/AlGaAs/GaAs separate confinement heterostructure quantum-well laser diodes for a wide range of injection currents, including the lasing regime. By increasing the injection current, the development of a parasitic voltage drop is detected at initial calibration layers and the buffer layer of the laser structure. Catastrophic degradation of the laser mirror was observed at the level of injection current ∼19 times the threshold value. Atomic force microscopy images of the mirror revealed a 100 nm deep crater of maximum width ∼2.5 μm in the vicinity of the buffer/emitter interface. By combining the surface morphology results of the destructed mirror with those of Kelvin probe force microscopy in operating devices, it is concluded that the parasitic voltage drop is responsible for a substantial energy dissipation and the nonoptical degradation of the laser mirror. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0016537

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy</title>
<author>
<name sortKey="Ankudinov, A V" uniqKey="Ankudinov A">A. V. Ankudinov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021</wicri:regionArea>
<wicri:noRegion>194021</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Wihuri Physical Laboratory, Turku University, Turku, FIN 20014, Finland</s1>
</inist:fA14>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Wihuri Physical Laboratory, Turku University, Turku, FIN 20014</wicri:regionArea>
<wicri:noRegion>FIN 20014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Evtikhiev, V P" uniqKey="Evtikhiev V">V. P. Evtikhiev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021</wicri:regionArea>
<wicri:noRegion>194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kotelnikov, E Yu" uniqKey="Kotelnikov E">E. Yu. Kotelnikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021</wicri:regionArea>
<wicri:noRegion>194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Titkov, A N" uniqKey="Titkov A">A. N. Titkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021</wicri:regionArea>
<wicri:noRegion>194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laiho, R" uniqKey="Laiho R">R. Laiho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021</wicri:regionArea>
<wicri:noRegion>194021</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0016537</idno>
<date when="2003-01-01">2003-01-01</date>
<idno type="stanalyst">PASCAL 03-0016537 AIP</idno>
<idno type="RBID">Pascal:03-0016537</idno>
<idno type="wicri:Area/Main/Corpus">00E113</idno>
<idno type="wicri:Area/Main/Repository">00C754</idno>
<idno type="wicri:Area/Russie/Extraction">000587</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Atomic force microscopy</term>
<term>Charge injection</term>
<term>Electric potential</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Laser mirrors</term>
<term>Quantum well lasers</term>
<term>Semiconductor heterojunctions</term>
<term>Semiconductor quantum wells</term>
<term>Surface topography</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7321F</term>
<term>8107S</term>
<term>4255P</term>
<term>4279B</term>
<term>7867D</term>
<term>8105E</term>
<term>4260B</term>
<term>8535B</term>
<term>6837P</term>
<term>6835B</term>
<term>6865F</term>
<term>6847F</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Aluminium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Laser puits quantique</term>
<term>Miroir laser</term>
<term>Microscopie force atomique</term>
<term>Topographie surface</term>
<term>Potentiel électrique</term>
<term>Hétérojonction semiconducteur</term>
<term>Puits quantique semiconducteur</term>
<term>Injection charge</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Kelvin probe force microscopy is used to observe the bulk potential redistribution across the high power InGaAs/AlGaAs/GaAs separate confinement heterostructure quantum-well laser diodes for a wide range of injection currents, including the lasing regime. By increasing the injection current, the development of a parasitic voltage drop is detected at initial calibration layers and the buffer layer of the laser structure. Catastrophic degradation of the laser mirror was observed at the level of injection current ∼19 times the threshold value. Atomic force microscopy images of the mirror revealed a 100 nm deep crater of maximum width ∼2.5 μm in the vicinity of the buffer/emitter interface. By combining the surface morphology results of the destructed mirror with those of Kelvin probe force microscopy in operating devices, it is concluded that the parasitic voltage drop is responsible for a substantial energy dissipation and the nonoptical degradation of the laser mirror. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>93</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ANKUDINOV (A. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EVTIKHIEV (V. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOTELNIKOV (E. Yu.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TITKOV (A. N.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAIHO (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>A.F. Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, 194021, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Wihuri Physical Laboratory, Turku University, Turku, FIN 20014, Finland</s1>
</fA14>
<fA20>
<s1>432-437</s1>
</fA20>
<fA21>
<s1>2003-01-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0016537</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Kelvin probe force microscopy is used to observe the bulk potential redistribution across the high power InGaAs/AlGaAs/GaAs separate confinement heterostructure quantum-well laser diodes for a wide range of injection currents, including the lasing regime. By increasing the injection current, the development of a parasitic voltage drop is detected at initial calibration layers and the buffer layer of the laser structure. Catastrophic degradation of the laser mirror was observed at the level of injection current ∼19 times the threshold value. Atomic force microscopy images of the mirror revealed a 100 nm deep crater of maximum width ∼2.5 μm in the vicinity of the buffer/emitter interface. By combining the surface morphology results of the destructed mirror with those of Kelvin probe force microscopy in operating devices, it is concluded that the parasitic voltage drop is responsible for a substantial energy dissipation and the nonoptical degradation of the laser mirror. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C21F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05Y</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B79B</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B40B60B</s0>
</fC02>
<fC02 i1="08" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B60A16C</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B60H35B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>4279B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>4260B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>8535B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>6837P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>6835B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>6865F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>6847F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Miroir laser</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Laser mirrors</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Topographie surface</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Surface topography</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Potentiel électrique</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Electric potential</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Injection charge</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Charge injection</s0>
</fC03>
<fN21>
<s1>001</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0252M000239</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000587 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000587 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0016537
   |texte=   Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024